Panel
- class Panel(*args, **kw)[source]
Bases:
DataFrame
Panel class.
Attributes Summary
Returns panel's frames.
Returns panel's ids without duplicates.
Returns the number of columns in the panel.
Returns the number of frames in the panel.
Returns the number of timesteps in the panel.
Return a tuple representing the dimensionality of the Panel.
Returns the Panel with the testing set.
Returns panel's timesteps.
Returns the Panel with the training set.
Returns the Panel with the validation set.
3D matrix with Panel value.
Methods Summary
drop_ids
(ids[, inplace])Drop frames by id.
dropna_frames
([inplace])Drop frames with missing values from the panel.
Find NaN values index.
Flatten the panel.
get_timesteps
([n])Returns the first timestep of each frame in the panel.
head_panel
([n])Return the first n frames of the panel.
match_frames
(other[, inplace])Match panel with other panel.
plot
([add_annotation, max, use_timestep])Plot the panel.
reset_ids
([inplace])Reset panel's ids.
row_panel
([n])Returns the nth row of each frame.
sample_panel
([samples, how, reset_ids, seed])Sample panel returning a subset of frames.
set_training_split
([train_size, val_size, ...])Splits Panel into training, validation, and test.
shuffle_panel
([seed, reset_ids])Shuffle the panel.
sort_panel
([ascending, inplace, kind, key])Sort panel by ids.
tail_panel
([n])Return the last n frames of the panel.
Convert panel to dataframe.
Attributes Documentation
- frames
Returns panel’s frames.
- ids
Returns panel’s ids without duplicates.
- num_columns
Returns the number of columns in the panel.
- num_frames
Returns the number of frames in the panel.
- num_timesteps
Returns the number of timesteps in the panel.
- shape_panel
Return a tuple representing the dimensionality of the Panel.
- test
Returns the Panel with the testing set.
- Returns
Panel with the testing set.
- Return type
Panel
- timesteps
Returns panel’s timesteps.
- train
Returns the Panel with the training set.
- Returns
Panel with the training set.
- Return type
Panel
- val
Returns the Panel with the validation set.
- Returns
Panel with the validation set.
- Return type
Panel
- values_panel
3D matrix with Panel value.
Example:
>>> panel.values array([[[283.95999146, 284.13000488, 280.1499939 , 281.77999878], [282.58999634, 290.88000488, 276.73001099, 289.98001099]], [[282.58999634, 290.88000488, 276.73001099, 289.98001099], [285.54000854, 286.3500061 , 274.33999634, 277.3500061 ]], [[285.54000854, 286.3500061 , 274.33999634, 277.3500061 ], [274.80999756, 279.25 , 271.26998901, 274.73001099]], [[274.80999756, 279.25 , 271.26998901, 274.73001099], [270.05999756, 272.35998535, 263.32000732, 264.57998657]]])
Methods Documentation
- drop_ids(ids: list[int] | int, inplace: bool = False) Panel | None [source]
Drop frames by id.
- Parameters
ids (
list[int]
orint
) – List of ids to drop.inplace (
bool
) – Whether to drop ids inplace.
- Returns
Panel with frames dropped.
- Return type
Panel
- dropna_frames(inplace: bool = False) Panel | None [source]
Drop frames with missing values from the panel.
- Parameters
inplace (
bool
) – Whether to drop frames inplace.- Returns
Panel with frames dropped.
- Return type
Panel
- findna_frames() Int64Index [source]
Find NaN values index.
- Returns
List with index of NaN frames.
- Return type
List
- get_timesteps(n: list[int] | int = 0) Panel [source]
Returns the first timestep of each frame in the panel.
- Parameters
n (
list[int]
orint
) – Timestep to return.
- head_panel(n: int = 5) Panel [source]
Return the first n frames of the panel.
- Parameters
n (
int
) – Number of frames to return.- Returns
Result of head function.
- Return type
Panel
- match_frames(other: Panel, inplace: bool = False) Panel | None [source]
Match panel with other panel.
This function will match the ids and id order of self based on the ids of other.
- Parameters
other (
Panel
) – Panel to match with.inplace (
bool
) – Whether to match inplace.
- Returns
Result of match function.
- Return type
Panel
- plot(add_annotation: bool = True, max: int = 10000, use_timestep: bool = False, **kwargs) plot.PanelFigure [source]
Plot the panel.
- Parameters
add_annotation (
bool
) – If True, plot the training, validation, and test annotation.max (
int
) – Maximum number of samples to plot.use_timestep (
bool
) – If True, plot the timestep instead of the sample index.**kwargs – Additional arguments to pass to the plot function.
- Returns
Result of plot function.
- Return type
plot
- reset_ids(inplace: bool = False) Panel | None [source]
Reset panel’s ids.
- Parameters
inplace (
bool
) – Whether to reset ids inplace.
- row_panel(n: list[int] | int = 0) Panel [source]
Returns the nth row of each frame.
- Parameters
n (
list[int]
orint
) – Row index.
- sample_panel(samples: int | float = 5, how: str = 'spaced', reset_ids: bool = False, seed: int = 42) Panel | None [source]
Sample panel returning a subset of frames.
- Parameters
samples (
int
orfloat
) – Number or percentage of samples to return.how (
str
) – Sampling method, ‘spaced’ or ‘random’reset_ids (
bool
) – If True, reset the index of the sampled panel.seed (
int
) – Random seed.
- Returns
Result of sample function.
- Return type
Panel
- set_training_split(train_size: float | int = 0.7, val_size: float | int = 0.2, test_size: float | int = 0.1) None [source]
Splits Panel into training, validation, and test.
- Parameters
train_size (
float
orint
) – Fraction of data to use for training.test_size (
float
orint
) – Fraction of data to use for testing.val_size (
float
orint
) – Fraction of data to use for validation.
Example:
>>> panel.set_training_split(train_size=0.8, val_size=0.2, test_size=0.1)
- shuffle_panel(seed: int = None, reset_ids: bool = False) Panel | None [source]
Shuffle the panel.
- Parameters
seed (
int
) – Random seed.reset_ids (
bool
) – If True, reset the index of the shuffled panel.
- Returns
Result of shuffle function.
- Return type
Panel
- sort_panel(ascending: bool = True, inplace: bool = False, kind: str = 'quicksort', key: callable = None) Panel | None [source]
Sort panel by ids.
- Parameters
ascending (
bool
or list-like ofbools
, default True) – Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.inplace (
bool
, default False) – If True, perform operation in-place.kind ({'quicksort', 'mergesort', 'heapsort', 'stable'}, default 'quicksort') – Choice of sorting algorithm. See also numpy.sort() for more information. mergesort and stable are the only stable algorithms. For DataFrames, this option is only applied when sorting on a single column or label.
key (callable, optional) – If not None, apply the key function to the index values before sorting. This is similar to the key argument in the builtin sorted() function, with the notable difference that this key function should be vectorized. It should expect an Index and return an Index of the same shape. For MultiIndex inputs, the key is applied per level.
- Returns
The original DataFrame sorted by the labels or None if inplace=True.
- Return type
Panel
orNone