ConvModel
- class ConvModel(x: Panel, y: Panel, model_type: str = None, conv_layers: int = 1, conv_filters: int = 32, kernel_size: int = 3, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: str = None, optimizer: str = None, metrics: list[str] = None, last_activation: str = None)[source]
Bases:
BaseModel
Convolutional model.
Methods Summary
build
()Build the model.
compile
(**kwargs)Compile the model.
fit
(**kwargs)Fit the model.
get_auc
()Get the AUC score.
predict
([data])Predict.
predict_proba
([data])Predict probabilities.
Residuals.
score
([on])Score the model.
Set the arrays.
Methods Documentation
- compile(**kwargs) None
Compile the model.
- Parameters
**kwargs – Additional arguments to pass to the compile method.
- fit(**kwargs) None
Fit the model.
- Parameters
**kwargs – Additional arguments to pass to the fit method.
- get_auc() float
Get the AUC score.
- predict(data: Optional[Panel] = None, **kwargs) Panel
Predict.
- Parameters
data (
Panel
) – Panel of data to predict.**kwargs – Additional arguments to pass to the predict method.
- Returns
Panel
of predicted values.
- predict_proba(data: Optional[Panel] = None, **kwargs) Panel
Predict probabilities.
- Parameters
data (
Panel
) – Panel of data to predict.**kwargs – Additional arguments to pass to the predict method.
- Returns
Panel of predicted probabilities.
- score(on: list[str] | str = None, **kwargs) pd.DataFrame
Score the model.
- Parameters
on (
list[str]
orstr
) – Columns to score on.**kwargs – Additional arguments to pass to the score method.
- Returns
Panel of scores.
- set_arrays() None
Set the arrays.