ConvModel

class ConvModel(x: Panel, y: Panel, model_type: str = None, conv_layers: int = 1, conv_filters: int = 32, kernel_size: int = 3, dense_layers: int = 1, dense_units: int = 32, activation: str = 'relu', loss: str = None, optimizer: str = None, metrics: list[str] = None, last_activation: str = None)[source]

Bases: BaseModel

Convolutional model.

Methods Summary

build()

Build the model.

compile(**kwargs)

Compile the model.

fit(**kwargs)

Fit the model.

get_auc()

Get the AUC score.

predict([data])

Predict.

predict_proba([data])

Predict probabilities.

residuals()

Residuals.

score([on])

Score the model.

set_arrays()

Set the arrays.

Methods Documentation

build() None[source]

Build the model.

compile(**kwargs) None

Compile the model.

Parameters

**kwargs – Additional arguments to pass to the compile method.

fit(**kwargs) None

Fit the model.

Parameters

**kwargs – Additional arguments to pass to the fit method.

get_auc() float

Get the AUC score.

predict(data: Optional[Panel] = None, **kwargs) Panel

Predict.

Parameters
  • data (Panel) – Panel of data to predict.

  • **kwargs – Additional arguments to pass to the predict method.

Returns

Panel of predicted values.

predict_proba(data: Optional[Panel] = None, **kwargs) Panel

Predict probabilities.

Parameters
  • data (Panel) – Panel of data to predict.

  • **kwargs – Additional arguments to pass to the predict method.

Returns

Panel of predicted probabilities.

residuals() Panel

Residuals.

Returns

Panel of residuals.

score(on: list[str] | str = None, **kwargs) pd.DataFrame

Score the model.

Parameters
  • on (list[str] or str) – Columns to score on.

  • **kwargs – Additional arguments to pass to the score method.

Returns

Panel of scores.

set_arrays() None

Set the arrays.