LogisticRegression
- class LogisticRegression(x, y, **kwargs)[source]
Bases:
DenseModelLogistic regression model.
Methods Summary
build()Build the model.
compile(**kwargs)Compile the model.
fit(**kwargs)Fit the model.
get_auc()Get the AUC score.
predict([data])Predict.
predict_proba([data])Predict probabilities.
Residuals.
score([on])Score the model.
Set the arrays.
Methods Documentation
- build() None
Build the model.
- compile(**kwargs) None
Compile the model.
- Parameters
**kwargs – Additional arguments to pass to the compile method.
- fit(**kwargs) None
Fit the model.
- Parameters
**kwargs – Additional arguments to pass to the fit method.
- get_auc() float
Get the AUC score.
- predict(data: Optional[Panel] = None, **kwargs) Panel
Predict.
- Parameters
data (
Panel) – Panel of data to predict.**kwargs – Additional arguments to pass to the predict method.
- Returns
Panelof predicted values.
- predict_proba(data: Optional[Panel] = None, **kwargs) Panel
Predict probabilities.
- Parameters
data (
Panel) – Panel of data to predict.**kwargs – Additional arguments to pass to the predict method.
- Returns
Panel of predicted probabilities.
- score(on: list[str] | str = None, **kwargs) pd.DataFrame
Score the model.
- Parameters
on (
list[str]orstr) – Columns to score on.**kwargs – Additional arguments to pass to the score method.
- Returns
Panel of scores.
- set_arrays() None
Set the arrays.